October 23, 2021

Nutra Health

The Ideal Health

Widespread coexistence of self-compatible and self-incompatible phenotypes in a diallelic self-incompatibility system in Ligustrum vulgare (Oleaceae)

  • Arista M, Berjano R, Viruel J, Ortiz MÁ, Talavera M, Ortiz P (2017) Uncertain pollination environment promotes the evolution of a stable mixed reproductive system in the self-incompatible Hypochaeris salzmanniana (Asteraceae). Ann Bot 120(3):447–456

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrett SC (2019) ‘A most complex marriage arrangement’: recent advances on heterostyly and unresolved questions. N Phytol 224(3):1051–1067

    Article 

    Google Scholar
     

  • Besnard G, Cheptou P-O, Debbaoui M, Lafont P, Hugueny B, Dupin J et al. (2020) Paternity tests support a diallelic self-incompatibility system in a wild olive (Olea europaea subsp. laperrinei, Oleaceae). Ecol Evol 10(4):1876–1888

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Billiard S, López‐Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud (2011) Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev 86(2):421–442

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Busch JW (2005) The evolution of self‐compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Am J Bot 92(9):1503–1512

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Busch JW, Joly S, Schoen DJ (2010) Does mate limitation in self‐incompatible species promote the evolution of selfing? The case of Leavenworthia alabamica. Evol Int J Org Evol 64(6):1657–1670

    Article 

    Google Scholar
     

  • Busch JW, Schoen DJ (2008) The evolution of self-incompatibility when mates are limiting. Trends Plant Sci 13(3):128–136

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Carre A, Gallina S, Santoni S, Vernet P, Gode C, Castric V et al. (2021). Genetic mapping of sex and self-incompatibility determinants in the androdioecious plant Phillyrea iangustifolia. bioRxiv https://doi.org/10.1101/2021.04.15.439943

  • Castric V, Vekemans X (2004) Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol Ecol 13:2873–2889

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112(988):975–997

    Article 

    Google Scholar
     

  • Charlesworth D, Charlesworth B (1979) The evolution and breakdown of S-allele systems. Heredity 43:41–55

    Article 

    Google Scholar
     

  • Darwin C (1877). The different forms of flowers on plants of the same species. John Murray: London

  • Dommée B, Thompson JD, Cristini F (1992) Distylie chez Jasminum fruticans L.: hypothèse de la pollinisation optimale basée sur les variations de l’écologie intraflorale. Bull de la Société Botanique de Fr Lett Botaniques 139(3):223–234

    Article 

    Google Scholar
     

  • Durand E, Chantreau M, Le Veve A, Stetsenko R, Dubin M, Genete M et al. (2020) Evolution of self‐incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl 13(6):1279–1297

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11(1):53–63

    Article 

    Google Scholar
     

  • Foxe JP, Stift M, Tedder A, Haudry A, Wright SI, Mable BK (2010) Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64(12):3495–3510

    PubMed 
    Article 

    Google Scholar
     

  • Ganders FR (1979) The biology of heterostyly. NZ J Bot 17(4):607–635

    Article 

    Google Scholar
     

  • Gervais CE, Awad DA, Roze D, Castric V, Billiard S (2014) Genetic architecture of inbreeding depression and the maintenance of gametophytic self‐incompatibility. Evolution 68(11):3317–3324

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Gervais CE, Castric V, Ressayre A, Billiard S (2011) Origin and diversification dynamics of self-incompatibility haplotypes. Genetics 188(3):625–636

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igic B (2010) Species selection maintains self-incompatibility. Science 330(6003):493–495

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goodwillie C (1999) Multiple origins of self‐compatibility in Linanthus section Leptosiphon (Polemoniaceae): phylogenetic evidence from internal‐transcribed‐spacer sequence data. Evolution 53(5):1387–1395

    PubMed 

    Google Scholar
     

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50(1):54–70

    PubMed 
    Article 

    Google Scholar
     

  • Igic B, Lande R, Kohn JR (2008) Loss of self-incompatibility and its evolutionary consequences. Int J Plant Sci 169(1):93–104

    Article 

    Google Scholar
     

  • Kalinowski ST, Taper ML, Marshall TV (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106

    PubMed 
    Article 

    Google Scholar
     

  • Kiew R (1984) Preliminary pollen study of the Oleaceae in Malesia. Gardens’ bulletin, Singapore


    Google Scholar
     

  • Kim K-J (1999) Molecular phylogeny of Forsythia (Oleaceae) based on chloroplast DNA variation. Plant Syst Evol 218(1-2):113–123

    CAS 
    Article 

    Google Scholar
     

  • Koseva B, Crawford DJ, Brown KE, Mort ME, Kelly JK (2017) The genetic breakdown of sporophytic self‐incompatibility in Tolpis coronopifolia (Asteraceae). N Phytol 216(4):1256–1267

    CAS 
    Article 

    Google Scholar
     

  • Lesaffre T, Billiard S (2019) The joint evolution of lifespan and self‐fertilization. J Evol Biol 33:41–56

    PubMed 
    Article 

    Google Scholar
     

  • Lewis D (1941) Male sterility in natural populations of hermaphrodite plants the equilibrium between females and hermaphrodites to be expected with different types of inheritance. N Phytol 40(1):56–63

    Article 

    Google Scholar
     

  • Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45(3):325–339

    Article 

    Google Scholar
     

  • Mable BK, Dart AVR, Berardo CD, Witham L (2005) Breakdown of self‐incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59(7):1437–1448

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Mable BK, Hagmann J, Kim ST, Adam A, Kilbride E, Weigel D et al. (2017) What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity 118(1):52

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Mariotti R, Fornasiero A, Mousavi S, Cultrera NGM, Brizioli F, Pandolfi S et al. (2020) Genetic mapping of the incompatibility locus in olive and development of a linked sequence-tagged site marker. Front Plant Sci 10:1760

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Obeso JR, Grubb PJ (1993). Fruit maturation in the shrub Ligustrum vulgare (Oleaceae): lack of defoliation effects. Oikos 68:309–316.

  • Olofsson JK, Cantera I, Van de Paer C, Hong‐Wa C, Zedane L, Dunning LT et al. (2019) Phylogenomics using low-depth whole genome sequencing: a case study with the olive tribe. Mol Ecol Resour 19(4):877–892

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ortiz MÁ, Talavera S, Garcia‐Castaño JL, Tremetsberger K, Stuessy T, Balao F et al. (2006) Self‐incompatibility and floral parameters in Hypochaeris sect. Hypochaeris (Asteraceae). Am J Bot 93(2):234–244

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Pannell JR, Korbecka G (2010) Mating-system evolution: rise of the irresistible males. Curr Biol 20(11):R482–R484

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Porcher E, Lande R (2005) Loss of gametophytic self‐incompatibility with evolution of inbreeding depression. Evolution 59(1):46–60

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Reinartz JA, Les DH (1994) Bottleneck‐induced dissolution of self‐incompatibility and breeding system consequences in Aster furcatus (Asteraceae). Am J Bot 81(4):446–455

    Article 

    Google Scholar
     

  • Ryu T (1976) Studies on heterostyly incompatibility of Abeliophyllum distichum. Seoul Nat Univ Coll Agric Bull 1:113–120


    Google Scholar
     

  • Saumitou-Laprade P, Vernet P, Dowkiw A, Bertrand S, Billiard S, Albert B et al. (2018) Polygamy or subdioecy? The impact of diallelic self-incompatibility on the sexual system in Fraxinus excelsior (Oleaceae). Proc R Soc B Biol Sci 285:1873


    Google Scholar
     

  • Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny G, Dommée B et al. (2010) A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327(5973):1648–1650

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Saumitou‐Laprade P, Vernet P, Vekemans X, Billiard S, Gallina S, Essalouh L et al. (2017a) Elucidation of the genetic architecture of self‐incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evol Appl 10:860–866

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Saumitou‐Laprade P, Vernet P, Vekemans X, Castric V, Barcaccia G, Khadari B et al. (2017b) Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the self‐incompatibility system of Olea europaea L. Evol Appl 10:867–880

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shimizu KK, Shimizu‐Inatsugi R, Tsuchimatsu T, Purugganan MD (2008) Independent origins of self‐compatibility in Arabidopsis thaliana. Mol Ecol 17(2):704–714

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Signorell A (2019). DescTools: Tools for descriptive statistics. R package version 17 09928.

  • Sison CP, Glaz J (1995) Simultaneous confidence intervals and sample size determination for multinomial proportions. J Am Stat Assoc 90(429):366–369

    Article 

    Google Scholar
     

  • Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype–specific F-Box gene. Plant Cell 17(1):37–51

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91(861):337–354

    Article 

    Google Scholar
     

  • Tsukamoto T, Ando T, Takahashi K, Omori T, Watanabe H, Kokubun H et al. (2003) Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by loss of pollen function. Plant Physiol 131(4):1903–1912

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Uyenoyama MK, Zhang Y, Newbigin E (2001) On the origin of self-incompatible haplotypes: transition through self-compatible intermediates. Genetics 157:1805–1817

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van de Paer C, Saumitou-Laprade P, Vernet P, Billiard S (2015) The joint evolution and maintenance of self-incompatibility with gynodioecy or androdioecy. J Theor Biol 371:90–101

    PubMed 
    Article 

    Google Scholar
     

  • Vernet P, Lepercq P, Billiard S, Bourceaux A, Lepart J, Dommée B et al. (2016) Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae. N Phytol 210:1408–1417

    Article 

    Google Scholar
     

  • Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am J Bot 87(12):1827–1841

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Woodson RE, Schery RW, D’Arcy WG (1976) Flora of Panama. Part VIII. Family 158. Oleaceae Ann Mo Botanical Gard 63(3):553–564

    Article 

    Google Scholar
     

  • Wu J, Gu C, Du Y-H, Wu H-Q, Liu W-S, Liu N et al. (2011) Self-compatibility of ‘Katy’apricot (Prunus armeniaca L.) is associated with pollen-part mutations. Sex Plant Reprod 24(1):23–35

    PubMed 
    Article 

    Google Scholar