Principles of seed banks and the emergence of complexity from dormancy

Principles of seed banks and the emergence of complexity from dormancy

  • 1.

    Smith, B. D. Documenting plant domestication: The consilience of biological and archaeological approaches. Proc. Natl Acad. Sci. USA 98, 1324–1326 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Darwin, C. R. On the Origins of the Species. (John Murray, 1859).

  • 3.

    Venable, D. L. & Lawlor, L. Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46, 272–282 (1980).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 4.

    Ellner, S. ESS germination strategies in randomly varying environments.1. Logist.Type models Theor. Popul. Biol. 28, 50–79 (1985).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    Levin, D. A. Seed bank as a source of genetic novelty in plants. Am. Nat. 135, 563–572 (1990).

    Article 

    Google Scholar
     

  • 6.

    Evans, M. E. K., Ferriere, R., Kane, M. J. & Venable, D. L. Bet hedging via seed banking in desert evening primroses (Oenothera, Onagraceae): demographic evidence from natural populations. Am. Nat. 169, 84–94 (2007). Simulations and field data support bet-hedging via dormancy.

    Article 

    Google Scholar
     

  • 7.

    Kortessis, N. & Chesson, P. Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition. Theor. Popul. Biol. 130, 60–73 (2019).

    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Peres, S. Saving the gene pool for the future: Seed banks as archives. Stud. Hist. Philos. Sci. Part C. Stud. Hist. Philos. Biol. Biomed. Sci. 55, 96–104 (2016).

    Article 

    Google Scholar
     

  • 9.

    Tocheva, E. I., Ortega, D. R. & Jensen, G. J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 14, 535–542 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Ginsburg, I., Lingam, M. & Loeb, A. Galactic Panspermia. Astrophys. J. Lett. 868 (2018).

  • 11.

    Maslov, S. & Sneppen, K. Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5, 10523 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Sriram, R., Shoff, M., Booton, G., Fuerst, P. & Visvesvara, G. S. Survival of Acanthamoeba cysts after desiccation for more than 20 years. J. Clin. Microbiol. 46, 4045–4048 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Storey, K. B. Life in the slow lane: molecular mechanisms of estivation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 733–754 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Hu, P. J. In WormBook (ed The C. elegans Research Community) (2007).

  • 16.

    Gilbert, J. J. Dormancy in rotifers. Trans. Am. Microsc. Soc. 93, 490–513 (1974).

    Article 

    Google Scholar
     

  • 17.

    Kostal, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Schleucher, E. Torpor in birds: taxonomy, energetics, and ecology. Physiol. Biochem. Zool. 77, 942–949 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Cooke, S. J., Grant, E. C., Schreer, J. F., Philipp, D. P. & Devries, A. L. Low temperature cardiac response to exhaustive exercise in fish with different levels of winter quiescence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134, 159–167 (2003).

    Article 

    Google Scholar
     

  • 20.

    Fenelon, J. C., Banerjee, A. & Murphy, B. D. Embryonic diapause: development on hold. Int. J. Dev. Biol. 58, 163–174 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Andrews, M. T. Advances in molecular biology of hibernation in mammals. Bioessays 29, 431–440 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Sottocornola, R. & Lo Celso, C. Dormancy in the stem cell niche. Stem Cell Res. Ther. 3, 10 (2012).

  • 23.

    Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020). Review discussing importance of dormancy for persistence and dispersal of cancer cells with clinical applications.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Darby, I. A. & Hewitson, T. D. Fibroblast differentiation in wound healing and fibrosis. Int Rev. Cytol. 257, 143–179 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 25.

    Chapman, N. M., Boothby, M. R. & Chi, H. B. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 777–784 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109-114 (2020).

  • 28.

    Seger, J. & Brockmann, J. H. What is bet-hedging? In Oxford Surveys in Evolutionary Biology (eds Harvey P. H. & Partridge L.) Vol. 4, 182–211 (Oxford University Press, 1987). Comprehensive review of bet-hedging in population biology.

  • 29.

    Considine, M. J. & Considine, J. A. On the language and physiology of dormancy and quiescence in plants. J. Exp. Bot. 67, 3189–3203 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Cohen, D. Optimizing reproduction in a randomly varying environment. Theor. Biol. 12, 119–129 (1966). Among the first mathematical models describing the benefits of delayed seed germination.

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Amen, R. D. A model of seed dormancy. Bot. Rev. 34, 1–31 (1968).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Bulmer, M. G. Delayed germination of seeds: Cohen’s model revisited. Theor. Popul. Biol. 26, 367–377 (1984).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 33.

    Philippi, T. Bet-hedging germination of desert annuals: beyond the 1st year. Am. Nat. 142, 474–487 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Rajon, E., Venner, S. & Menu, F. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy. J. Evol. Biol. 22, 2094–2103 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Blath, J., González Casanova, A., Eldon, B., Kurt, N. & Wilke-Berenguer, M. Genetic variability under the seedbank coalescent. Genetics 200, 921–934 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Locey, K. J., Fisk, M. C. & Lennon, J. T. Microscale insight into microbial seed banks. Front. Microbiol. 7, 2040 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Yamamichi, M., Hairston, N. G., Rees, M. & Ellner, S. P. Rapid evolution with generation overlap: the double-edged effect of dormancy. Theor. Ecol. 12, 179–195 (2019). Models explore how dormancy and environmental fluctuations affect the rate of trait evolution and adaptation.

    Article 

    Google Scholar
     

  • 38.

    Wörmer, L. et al. Microbial dormancy in the marine subsurface: Global endospore abundance and response to burial. Sci. Adv. 5, eaav1024 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Baskin, C. C. & Baskin, J. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination. 1600 (Academic Press, 2014). Comprehensive book covering the causes and consequences of dormancy in plants.

  • 40.

    Magurran, A. E. Measuring Biological Diversity. (Blackwell Publishing, 2004).

  • 41.

    Hoyle, G. L. et al. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Glob. Change Biol. 19, 1549–1561 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Haaland, T. R., Wright, J. & Ratikainen, I. I. Bet-hedging across generations can affect the evolution of variance-sensitive strategies within generations. Proc. R. Soc. B Biol. Sci. 286, 20192070 (2019).

    Article 

    Google Scholar
     

  • 43.

    Childs, D. Z., Metcalf, C. J. E. & Rees, M. Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proc. R. Soc. B Biol. Sci. 277, 3055–3064 (2010).

    Article 

    Google Scholar
     

  • 44.

    Starrfelt, J. & Kokko, H. Bet-hedging – a triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 45.

    Cooper, W. S. & Kaplan, R. H. Adaptive coin-flipping: a decision-theoretic examination of natural selection for random individual variation. J. Theor. Biol. 94, 135–151 (1982).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 47.

    Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005). Model showing that stochastic transitioning into dormancy is beneficial in fluctuating environments.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C. & Rainey, P. B. Experimental evolution of bet hedging. Nature 462, 90–93 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 49.

    Jost, J. & Wang, Y. Optimization and phenotype allocation. Bull. Math. Biol. 76, 184–200 (2014).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 50.

    Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 51.

    Epstein, S. S. Microbial awakenings. Nature 457, 1083–1083 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Buerger, S. et al. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl. Environ. Microbiol. 78, 3221–3228 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Chevin, L. M. & Hoffman, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. Lond. 372, 1723 (2017).

    Article 

    Google Scholar
     

  • 54.

    Govern, C. C. & ten Wolde, P. R. Optimal resource allocation in cellular sensing systems. Proc. Natl Acad. Sci. USA 111, 17486–17491 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Baskin, J. M. & Baskin, C. C. The annual dormancy cycle in buried weed seeds: a continuum. Bioscience 35, 492–498 (1985).

    Article 

    Google Scholar
     

  • 56.

    Tuan, P. A., Kumar, R., Rehal, P. K., Toora, P. K. & Ayele, B. T. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front. Plant Sci. 9, 668 (2018).

  • 57.

    Samuels, I. A. & Levey, D. J. Effects of gut passage on seed germination: do experiments answer the questions they ask? Funct. Ecol. 19, 365–368 (2005).

    Article 

    Google Scholar
     

  • 58.

    Dworkin, J. & Losick, R. Developmental commitment in a bacterium. Cell 121, 401–409 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 59.

    McKenney, P. T., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11, 33–44 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    Locey, K. J. & Lennon, J. T. A residence time theory for biodiversity. Am. Nat. 194, 59–72 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 61.

    Levin, B. R. et al. A numbers game: ribosome densities, bacterial growth, and antibiotic-mediated stasis and death. mBio. 8, e02253-16 (2017).

  • 62.

    Rambo, I. M., Marsh, A. & Biddle, J. F. Cytosine methylation within marine sediment microbial communities: potential epigenetic adaptation to the environment. Front. Microbiol. 10, 1291 (2019).

  • 63.

    Wisnoski, N. I., Leibold, M. A. & Lennon, J. T. Dormancy in metacommunities. Am. Nat. 194, 135–151 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 64.

    Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 65.

    Locey, K. J. et al. Dormancy dampens the microbial distance-decay relationship. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190243 (2020). Combined field and modeling approach demonstrating that dormancy can alter biogeographic patterns.

  • 66.

    Chihara, K., Matsumoto, S., Kagawa, Y. & Tsuneda, S. Mathematical modeling of dormant cell formation in growing biofilm. Front. Microbiol. 6, 534 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Frank, S. A. Metabolic heat in microbial conflict and cooperation. Front. Ecol. Evolution 8, 275 (2020).

    Article 

    Google Scholar
     

  • 68.

    Maki, H. Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu. Rev. Genet. 36, 279–303 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 69.

    Foster, P. L. Stress responses and genetic variation in bacteria. Mutat. Res. Fundam. Mol. Mech. Mutagen. 569, 3–11 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 70.

    Ryan, F. J. Spontaneous mutation in non-dividing bacteria. Genetics 40, 726–738 (1955).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 71.

    Gangloff, S. et al. Quiescence unveils a novel mutational force in fission yeast. eLife 6, e27469 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 72.

    Long, H. A. et al. Evolutionary determinants of genome-wide nucleotide composition. Nat. Ecol. Evol. 2, 237–240 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 73.

    Shoemaker, W. R. & Lennon, J. T. Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol. Appl. 11, 60–75 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 74.

    Tellier, A., Laurent, S. J. Y., Lainer, H., Pavllidis, P. & Stephan, W. Inference of seed bank parameters in two wild tomato species using ecological and genetic data. Proc. Natl. Acad. Sci. USA 108, 17052-17057 (2011). Infers seed bank quantities based on a coalescent theoretical model.

  • 75.

    Sellinger, T. P. P., Abu Awad, D., Moest, M. & Tellier, A. Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data. PLoS Genet. 16, e1008698 (2020).

  • 76.

    Blath, J., Buzzoni, E., Koskela, J. & Berenguer, M. W. Statistical tools for seed bank detection. Theor. Popul. Biol. 132, 1–15 (2020).

    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 77.

    Templeton, A. R. & Levin, D. A. Evolutionary consequences of seed pools. Am. Nat. 114, 232–249 (1979).

    Article 

    Google Scholar
     

  • 78.

    Hairston, N. G. & Destasio, B. T. Rate of evolution slowed by dormant propagule pool. Nature 336, 239–242 (1988). Field evidence that dormancy and species interactions affect rates of evolution.

    ADS 
    Article 

    Google Scholar
     

  • 79.

    Turelli, M., Schemske, D. W. & Bierzychudek, P. Stable two-allele polymorphisms maintained by fluctuating fitnesses and seed banks: Protecting the blues in Linanthus parryae. Evolution 55, 1283–1298 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 80.

    Sundqvist, L., Godhe, A., Jonsson, P. R. & Sefbom, J. The anchoring effect-long-term dormancy and genetic population structure. ISME J. 12, 2929–2941 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 81.

    Maughan, H. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution 61, 280–288 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 82.

    Weller, C. & Wu, M. A generation-time effect on the rate of molecular evolution in bacteria. Evolution 69, 643–652 (2015). Phylogenetic comparative approach demonstrating that dormancy reduces rates of evolution.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 83.

    Willis, C. G. et al. The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 84.

    Kalisz, S. & McPeek, M. A. Demography of an age-structured annual: resampled projection matrices, elasticity analyses, and seed bank effects. Ecology 73, 1082–1093 (1992).

    Article 

    Google Scholar
     

  • 85.

    Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 86.

    Moriuchi, K. S., Venable, D. L., Pake, C. E. & Lange, T. Direct measurement of the seed bank age structure of a Sonoran desert annual plant. Ecology 81, 1133–1138 (2000).

    Article 

    Google Scholar
     

  • 87.

    Moger-Reischer, R. Z. & Lennon, J. T. Microbial ageing and longevity. Nat. Rev. Microbiol. 17, 679–690 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 88.

    Dalling, J. W., Davis, A. S., Schutte, B. J. & Arnold, A. E. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J. Ecol. 99, 89–95 (2011).

    Article 

    Google Scholar
     

  • 89.

    Hairston, N. G. & Kearns, C. M. Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr. Comp. Biol. 42, 481–491 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 90.

    Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).

  • 91.

    Wright, E. S. & Vetsigian, K. H. Stochastic exits from dormancy give rise to heavy-tailed distributions of descendants in bacterial populations. Mol. Ecol. 28, 3915–3928 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 92.

    Cordero, F., Cassanova, A. G., Schweinsberg, J. & Wilke-Berenguer, M. Λ-coalescents arising in populations with dormancy. Preprint at https://arxiv.org/abs/2009.09418 (2020).

  • 93.

    Blath, J., Buzzoni, E., Gonzalez Casanova, A. & Wilke-Berenguer, M. Separation of time-scales for the seed bank diffusion and its jump-diffusion limit. J Math Biol. 82, 53 (2021).

  • 94.

    Rogalski, M. A. Maladaptation to acute metal exposure in resurrected Daphnia ambigua clones after decades of increasing contamination. Am. Nat. 189, 443–452 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 95.

    Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 96.

    Warner, R. R. & Chesson, P. L. Coexistence mediated by recruitment fluctuation: a field guide to the storage effect. Am. Nat. 125, 769–787 (1985).

    Article 

    Google Scholar
     

  • 97.

    Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994). Describes models of competition and coexistence, including the storage effect, which often involves dormancy in fluctuating environments.

    MATH 
    Article 

    Google Scholar
     

  • 98.

    Pake, C. E. & Venable, D. L. Is coexistence of Sonoran Desert annuals mediated by temporal variability in reproductive success? Ecology 76, 246–261 (1995).

    Article 

    Google Scholar
     

  • 99.

    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. F. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 100.

    Cáceres, C. E. Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA 94, 9171–9175 (1997). Dormancy in lake zooplankton contributes to maintenance of diversity via the storage effect.

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 101.

    Jiang, L. & Morin, P. J. Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76, 660–668 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 102.

    Kuwamura, M., Nakazawa, T. & Ogawa, T. A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 103.

    Gulbudak, H. & Weitz, J. S. A touch of sleep: biophysical model of contact-mediated dormancy of archaea by viruses. Proc. R. Soc. B Biol. Sci. 283, 20161037 (2016).

  • 104.

    Kuwamura, M. & Nakazawa, T. Dormancy of predators dependent on the rate of variation in prey density. SIAM J. Appl. Math. 71, 169–179 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 105.

    McCauley, E., Nisbet, R. M., Murdoch, W. W., de Roos, A. M. & Gurney, W. S. C. Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653–656 (1999).

  • 106.

    Verin, M. & Tellier, A. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution 72, 1362–1372 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 107.

    Bautista, M. A., Zhang, C. Y. & Whitaker, R. J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. mBio. 6, e02565–14 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 108.

    Rengefors, K., Karlsson, I. & Hansson, L. A. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. B Biol. Sci. 265, 1353–1358 (1998).

    Article 

    Google Scholar
     

  • 109.

    Dzialowski, A. R., Lennon, J. T., O’Brien, W. J. & Smith, V. H. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshwat. Biol. 48, 1593–1602 (2003).

    Article 

    Google Scholar
     

  • 110.

    Sellinger, T., Muller, J., Hosel, V. & Tellier, A. Are the better cooperators dormant or quiescent? Math. Biosci. 318, 108272 (2019).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 111.

    Honegger, R. The lichen symbiosis: what is so spectacular about it? Lichenologist 30, 193–212 (1998).

    Article 

    Google Scholar
     

  • 112.

    Green, T. G. A., Pintado, A., Raggio, J. & Sancho, L. G. The lifestyle of lichens in soil crusts. Lichenologist 50, 397–410 (2018).

    Article 

    Google Scholar
     

  • 113.

    Kuykendall, L. D., Hashem, F. M., Bauchan, G. R., Devine, T. E. & Dadson, R. B. Symbiotic competence of Sinorhizobium fredii on twenty alfalfa cultivars of diverse dormancy. Symbiosis 27, 1–16 (1999).


    Google Scholar
     

  • 114.

    Vujanovic, V. & Vujanovic, J. Mycovitality and mycoheterotrophy: where lies dormancy in terrestrial orchid and plants with minute seeds? Symbiosis 44, 93–99 (2007).

    CAS 

    Google Scholar
     

  • 115.

    Dittmer, J. & Brucker, R. M. When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis. Microbiome 9, 85 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 116.

    Snyder, R. E. Multiple risk reduction mechanisms: can dormancy substitute for dispersal? Ecol. Lett. 9, 1106–1114 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 117.

    Vitalis, R., Rousset, F., Kobayashi, Y., Olivieri, I. & Gandon, S. The joint evolution of dispersal and dormancy in a metapopulation with local extinctions and kin competition. Evolution 67, 1676–1691 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 118.

    Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 119.

    den Hollander, F. & Pederzani, G. Multi-colony Wright-Fisher with a seed bank. Indag. Math. 28, 637–669 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 120.

    Coates, A. R. M. Dormancy and Low Growth States in Microbial Disease. (Cambridge University Press, 2003). Book describing how dormancy is involved in many human diseases.

  • 121.

    Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug resistance. Cell Host Microbe 13, 632–642 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 122.

    Zhu, D. L., Sorg, J. A. & Sun, X. M. Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile infection. Front. Cell. Infect. Microbiol. 8, 29 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 123.

    Wood, T. K., Knabel, S. J. & Kwan, B. W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 124.

    Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol. 19, e3001194 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 125.

    Mukamolova, G. V., Turapov, O., Malkin, J., Woltmann, G. & Barer, M. R. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 126.

    Shimizu, H. & Nakayama, K. Artificial intelligence in oncology. Cancer Sci. 111, 1452–1460 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 127.

    Aktipis, A. C., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883–892 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 128.

    Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 129.

    Miller, A. K., Brown, J. S., Basanta, D. & Huntly, N. What is the storage effect, why should it occur in cancers, and how can it inform cancer therapy? Cancer Control 27,1073274820941968 (2020).

  • 130.

    Park, S. Y. & Nam, J. S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med. 52, 569–581 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 131.

    Sorrell, I., White, A., Pedersen, A. B., Hails, R. S. & Boots, M. The evolution of covert, silent infection as a parasite strategy. Proc. R. Soc. B Biol. Sci. 276, 2217–2226 (2009).

    Article 

    Google Scholar
     

  • 132.

    Boots, M. et al. The population dynamical implications of covert infections in host–microparasite interactions. J. Anim. Ecol. 72, 1064–1072 (2003).

    Article 

    Google Scholar
     

  • 133.

    Gilbert, N. M., O’Brien, V. P. & Lewis, A. L. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog. 13, e1006238 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 134.

    Xu, R. Global dynamics of a delayed epidemic model with latency and relapse. Nonlinear Anal. Model Control 18, 250–263 (2013).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 135.

    Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019). Hosts defend against parasites via dormancy with implications for herd immunity.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 136.

    Lamont, B. B., Pausas, J. G., He, T. H., Witkowski, E. T. F. & Hanley, M. E. Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit. Rev. Plant Sci. 39, 140–172 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 137.

    Alsos, I. G., Muller, E. & Eidesen, P. B. Germinating seeds or bulbils in 87 of 113 tested Arctic species indicate potential for ex situ seed bank storage. Polar Biol. 36, 819–830 (2013).

    Article 

    Google Scholar
     

  • 138.

    Ooi, M. K. J., Auld, T. D. & Denham, A. J. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Glob. Change Biol. 15, 2375 – 2386 (2009).

  • 139.

    Gioria, M. & Pysek, P. The legacy of plant invasions: changes in the soil seed bank of invaded plant communities. Bioscience 66, 40–53 (2016).

    Article 

    Google Scholar
     

  • 140.

    Kuo, V., Lehmkuhl, B. K. & Lennon, J. T. Resuscitation of the microbial seed bank alters plant‐soil interactions. Mol. Ecol. 30, 2905–2914 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 141.

    Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 142.

    Kearns, P. J. et al. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments. Nat. Commun. 7, 12881 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 143.

    Salazar, A., Lennon, J. T. & Dukes, J. S. Microbial dormancy improves predictability of soil respiration at the seasonal time scale. Biogeochemistry 144, 103–116 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 144.

    Zha, J. R. & Zhuang, Q. L. Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget. Biogeosciences 17, 4591–4610 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 145.

    Blath, J., Hermann, F. & Slowik, N. A branching process model for dormancy and seed banks in randomly fluctuating environments. J. Math. Biol. 83, 17 (2021).

    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 146.

    Malik, T. & Smith, H. L. Does dormancy increase fitness of bacterial populations in time-varying environments? Bull. Math. Biol. 70, 1140–1162 (2008).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 147.

    Dombry, C., Mazza, C. & Bansaye, V. Phenotypic diversity and population growth in a fluctuating environment. Adv. Appl. Prob. 43, 375–398 (2011). Mathematical model for assessing optimality of transitioning in random environments.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 148.

    Wakeley, J. Coalescent Theory: An Introduction. (Greenwood Village: Roberts & Company Publishers, 2009). Concise introduction to the fundamentals of coalescent theory bridging mathematics and biology.

  • 149.

    Tellier, A. et al. Estimating parameters of speciation models based on refined summaries of the joint site-frequency spectrum. PLoS One 6, e18155 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 150.

    Tellier, A. Persistent seed banking as eco-evolutionary determinant of plant nucleotide diversity: novel population genetics insights. New Phytol. 221, 725–730 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 151.

    Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248 (1982). Foundational paper that introduced the standard coalescent.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 152.

    Kaj, I., Krone, S. M. & Lascoux, M. Coalescent theory for seed bank models. J. Appl. Probab. 38, 285–300 (2001). First paper to incorporate seed banks into coalescent theory.

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 153.

    Blath, J., Casanova, A. G., Kurt, N. & Wilke-Berenguer, M. A new coalescent for seed-bank models. Ann. Appl. Probab. 26, 857–891 (2016).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 154.

    Blath, J., Kurt, N., Gonzalez Casanova, A. & Wilke-Berenguer, M. The seed bank coalescent with simultaneous switching. Electron. J. Probab. 25, 1–21 (2020).

  • 155.

    Lalonde, R. G. & Roitberg, B. D. Chaotic dynamics can select for long-term dormancy. Am. Nat. 168, 127–131 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 156.

    Blath, J. & Tobias, A. Invasion and fixation of microbial dormancy traits under competitive pressure. Stoch. Proc. Appl. 130, 7363–7395 (2020).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 157.

    Tan, Z. X., Koh, J. M., Koonin, E. V. & Cheong, K. H. Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. 7, 1901559 (2020).

    Article 

    Google Scholar
     

  • 158.

    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • 159.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography. (Princeton University Press, 2001).

  • 160.

    Ewens, W. J. Sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • 161.

    Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • 162.

    Rosindell, J., Wong, Y. & Etienne, R. S. A coalescence approach to spatial neutral ecology. Ecol. Inform. 3, 259–271 (2008).

    Article 

    Google Scholar
     

  • 163.

    White, E. P., Thibault, K. M. & Xiao, X. Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology 93, 1772–1778 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 164.

    Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 5 (2017).

    Article 

    Google Scholar
     

  • 165.

    Greven, A., den Hollander, F. & Oomen, M. Spatial populations with seed-bank: well-posedness, duality and equilibrium. Preprint at https://arxiv.org/abs/2004.14137 (2020).

  • 166.

    Liggett, T. M. Interacting Particle Systems. 488 (Springer Science & Business Media, 1985). Overview of the mathematical theory of stochastic systems consisting of large numbers of interacting components.

  • 167.

    Kipnis, C. & Landim, C. Scaling Limits of Interacting Particle Systems. Vol. 320 (Springer, 1999).

  • 168.

    van der Hofstad, R. Random Graphs and Complex Networks. (Cambridge University Press, 2017).

  • 169.

    Levin, D. Z., Walter, J. & Murnighan, K. J. Dormant ties: the value of reconnecting. Organ. Sci. 22, 923–939 (2011).

    Article 

    Google Scholar
     

  • 170.

    Marin, A. & Hampton, K. Network instability in times of stability. Sociol. Forum 34, 313–336 (2019).

    Article 

    Google Scholar
     

  • 171.

    Crawford, D. C. & Mennerick, S. Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release. Neuroscientist 18, 216–223 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 172.

    Borsboom, D. A network theory of mental disorders. World Psychiatry 16, 5–13 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 173.

    Metz, J. A., Nisbet, R. M. & Geritz, S. A. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7, 198–202 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 174.

    Bansaye, V. & Meleard, S. Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior. (Springer, 2015).

  • 175.

    Champagnat, N., Ferrière, R. & Ben Arous, G. The canonical equation of adaptive dynamics: a mathematical view. Selection 2, 73–83 (2001).

    Article 

    Google Scholar
     

  • 176.

    Champagnat, N. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Their Appl. 116, 1127–1160 (2006).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 177.

    Champagnat, N. & Meleard, S. Polymorphic evolution sequence and evolutionary branching. Probab. Theory Relat. Field 151, 45–94 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 178.

    Kraut, A. & Bovier, A. From adaptive dynamics to adaptive walks. J. Math. Biol. 75, 1699–1747 (2019).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 179.

    Blath, J., Hammer, M. & Nie, F. The stochastic Fisher-KPP Equation with seed bank and on/off-branching-coalescing Brownian motion. Preprint at https://arxiv.org/abs/2005.01650 (2020).

  • Related Post

    Ten Weight Loss Hacks

    Ten Weight Loss Hacks

    Losing weight is not just a matter of eating the right foods and getting enough…